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The assembly of bacterial communities in wastewater treatment
plants (WWTPs) is affected by immigration via wastewater
streams, but the impact and extent of bacterial immigrants are
still unknown. Here, we quantify the effect of immigration at the
species level in 11 Danish full-scale activated sludge (AS) plants. All
plants have different source communities but have very similar
process design, defining the same overall environmental growth
conditions. The AS community composition in each plant was
strongly reflected by the corresponding influent wastewater
(IWW) microbial composition. Most species in AS across the plants
were detected and quantified in the corresponding IWW, allowing
us to identify their fate in the AS: growing, disappearing, or sur-
viving. Most of the abundant species in IWW disappeared in AS, so
their presence in the AS biomass was only due to continuous mass-
immigration. In AS, most of the abundant growing species were
present in the IWW at very low abundances. We predicted the AS
species abundances from their abundance in IWW by using a par-
tial least square regression model. Some species in AS were pre-
dicted by their own abundance in IWW, while others by multiple
species abundances. Detailed analyses of functional guilds revealed
different prediction patterns for different species. We show, in con-
trast to the present understanding, that the AS microbial commu-
nities were strongly controlled by the IWW source community and
could be quantitatively predicted by taking into account immigra-
tion. This highlights a need to revise the way we understand, de-
sign, and manage the microbial communities in WWTPs.

activated sludge | immigration | community assembly

The interaction of ecological forces underpins community as-
sembly in natural and engineered microbial ecosystems, such

as wastewater treatment plants (WWTPs). Since WWTPs are
responsible for the protection of human and environmental
health and for recovery of energy and nutrients, it is crucial to
understand the biological mechanisms that sustain the processes
behind the community assembly. After a decade of debate, both
stochastic processes, such as dispersal (e.g., immigration), and
deterministic processes, such as environmental conditions (e.g.,
pH, temperature) and biotic interactions (e.g., competition,
predation), are generally accepted to determine community as-
sembly in a range of microbial ecosystems, including engineered
systems (1–7). However, the difficulty of predicting stochastic
processes leaves the community assembly in full-scale WWTPs
poorly understood.
WWTPs can be regarded as open ecosystems (8), often con-

sisting of the activated sludge (AS) process and continuously fed
by upstream influent wastewater (IWW) (4, 9). Consequently,
AS and IWW together define a metacommunity (8) inter-
connected by the unidirectional and continuous flow (dispersal)
of “individuals” from IWW to AS, namely immigration. The
immigrating “individuals,” which include bacteria [also seen as
“invaders” (10)], are considered the main source of biomass that
potentially affects diversity, abundance, and assembly of the local
AS microbial communities (4, 8, 9, 11–13). This was already

proposed and accounted for in the early studies of AS engi-
neering modeling (14–17). The development of sequencing
technologies revealed that certain bacteria are shared between
IWW and AS (e.g., refs. 9 and 18), so immigration should be
tackled as mass flow immigration, here “mass-immigration,”
corresponding to the mass effect in Leibold’s metacommunity
paradigm (13, 19). AS plants are characterized by high dispersal
rate with low hydraulic retention times [generally 4 to 12 h (20)],
so a fraction of AS biomass is composed of IWW biomass (13).
Deterministic factors, such as design and operation of AS plants,
are believed to contribute to the AS microbial communities. In
particular, the solid retention time (SRT) is considered a key
operational parameter which directly controls the presence or
absence of microorganisms (specific biomass growth) in the
system, therefore affecting the community composition and the
treatment performance (20). Today, the management of full-
scale WWTPs across the world is almost exclusively based on
the traditional Baas Becking and Beijerinck’s deterministic
principle of “Everything is everywhere, but, the environment
selects” (21, 22). As a consequence, commonWWTP types across
the world are designed to establish a specific set of environmental
conditions that select for the growth of certain microbial func-
tional guilds carrying out the desired processes (species sorting)
(23). These design types include simple oxygenation for carbon
removal and nitrification and more advanced systems with com-
plex dynamics of oxic/anoxic conditions for carbon, nitrogen, and
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phosphorus removal. Microbial functional guilds specifically in-
volved in these processes are, for example, nitrifiers, denitrifiers,
and polyphosphate-accumulating organisms (PAOs).
Different approaches have been applied to evaluate the im-

portance of stochastic processes, such as immigration, for com-
munity assembly in AS plants. Some approaches are mostly
based on the analysis of experimental observations (data driven)
(8, 13, 18, 24, 25). The approach proposed by Saunders et al. (9)
detects all species in the system (IWW and AS) and establishes
mass balances for the calculation of net-specific growth rates of
all detected species in IWW and AS. In this way, the approach
measures the fate of immigrating bacteria in quantitative terms,
identifying microorganisms able or unable to grow in AS, thus
distinguishing the bacteria likely important for the function of
AS plants (9, 25–27). However, previous studies adopting this
approach to investigate immigration did not address whether
only the presence or also the abundance of species in the IWW
play a role (9, 25). In that case, they also did not address how to
predict the AS microbial communities given the community
profile in IWW.
Other approaches to evaluate the role of immigration are

theoretical, applying neutral and null models (4, 28–30). How-
ever, most of the theoretical models are based on simplified
assumptions and do not consider the interactions between mi-
crobial communities in IWW and AS. As we will demonstrate in
our study, data-driven models, such as multiresponse partial least
squares regression (PLSR), can be beneficial to predict the
abundance of species in AS based on the abundance in IWW. In
this way, we can evaluate the impact of immigration without the
need to build a specific model with the related simplifications
and assumptions. Indeed, PLSR is capable of handling collinear
and noisy variables and has the possibility to deconstruct and
interpret the model by simple graphical representation (31).
PLSR is widely and successfully used in various scientific disci-
plines dealing with high-dimensional data, such as bioinformatics,
genomics, and spectro-metrics and is increasingly applied in the
study of microbial ecology of the human microbiome (e.g., ref.
32). However, PLSR has very few implementations in engineered
ecosystems such as AS plants (33, 34).
To study in detail the impact of immigration in WWTPs, we

have selected 11 Danish full-scale AS plants characterized by
very similar process design and thus very similar selective pres-
sure acting on the AS microbial communities, and by different
geographical locations representing potentially different dis-
persal properties. We applied 16S ribosomal ribonucleic acid
(rRNA) gene amplicon sequencing and adopted the quantitative
approach by Saunders et al. (9) to evaluate the fate of all de-
tectable species in AS immigrating from the corresponding
IWW. Afterward, we used PLSR to predict the species abun-
dance in AS from IWW data and find correlations between the
abundance of species in IWW and AS. Our results showed that
mass-immigration strongly determined the AS microbial com-
munity structure (taxa composition and abundance) and that the
taxa abundance could be predicted by IWW abundance. The
results have a profound impact on the way we understand the
assembly of AS plants’ communities. Thus, a revision of the way
they can be predicted and controlled is needed.

Results
Community Structure in IWW and AS. The 11 Danish AS plants
investigated had very similar process design (biological removal
of nitrogen and phosphorus), a large AS common core com-
munity, but also unique AS microbial signatures stable over years
(35). These characteristics defined a similar selective pressure
acting on the AS microbial communities. Moreover, the plants
were located in different areas across Denmark, providing po-
tential variations in the IWW source communities and dispersal
conditions. We applied amplicon sequencing for community

analyses of IWW and AS samples (118 samples arranged in 59
IWW/AS pairs according to the sampling week) obtaining 13,756
to 104,449 read per sample (mean: 42,287) and 12,991 to 124,078
(mean: 45,153), respectively.
In general, microbial communities in IWW and AS were dif-

ferent in terms of overall composition and abundance, as evident
from the different groupings in the principal component analysis
(PCA) plot (Fig. 1A) and the differences in species abundance
shown by heat maps (SI Appendix, Fig. S1). While the 20 most
abundant species in IWW made up 45.8% of the total read
counts in IWW, they represented only 24.4% of the total read
counts in AS (SI Appendix, Fig. S1). Moreover, the IWW com-
munities varied more over time compared to AS, as seen by the
less-tight clustering of samples in IWW compared to AS
(Fig. 1A). Despite these differences, we observed pronounced
clustering by plant, especially in AS. This indicates that samples
from the same plant had a microbial community structure more
similar to each other than compared to community structures
from samples of other plants (Fig. 1A). Interestingly, IWW and
AS paired samples (from the same plant and the same sampling
week) exhibited a similar community gradient along the PC-2,
which was consistent across all the plants. This is confirmed by
the high correlation (r2 = 0.67) between PC-2 of IWW and AS
(Fig. 1B). Detailed analyses of community dissimilarity con-
firmed that IWW/AS paired samples from the same plant and
the same sampling week were overall significantly more similar
to each other than compared to any other IWW/AS pair com-
bination (e.g., IWW/AS pair from same plant but different
sampling week or IWW/AS pair from different plants) (Fig. 1C).
This reflects the presence of a plant-specific microbial commu-
nity between AS and its correspondent IWW source community.

Impact of Immigration on AS Microbial Communities. AS plants with
similar process designs are characterized by a core of common
abundant bacteria, which are considered to carry out important
processes (9, 35). We investigated whether the abundant species
in AS of each plant were detected in the corresponding IWW.
We found that nearly all of the 50 most abundant species in AS
were also detected in the correspondent IWW (Fig. 2A). In a few
plants (Aalborg East and Haderslev), nearly all of the top 200
species in AS could be detected in IWW, while this was not the
case in most of the other plants. This indicated the presence in
IWW of some low-abundance species which were difficult to
detect. To verify whether this dropout was related to technical
detection limitations, we deep sequenced a subset of IWW sam-
ples including Aalborg West and Randers AS plants, obtaining
123,550 to 259,110 reads per sample. Deep sequencing greatly
improved species-level detection in IWW, leading to the detection
of all top 200 species in AS in the corresponding IWW source
community (Fig. 2B).
Besides a common core community, AS plants with very

similar process designs are also often characterized by the
presence of unique species not present in other similar plants.
Sometimes the presence of transient species can deteriorate the
process provoking, for example, bulking (36). First, we identified
the presence of unique species in AS samples of each plant; then,
we investigated whether these unique species (plant specific)
were also detected in the corresponding IWW of the same plant
and/or in IWW of different plants (Fig. 2C). The number of
unique species found in the AS and detected in the corre-
sponding IWW from the same plant were significantly higher
than the ones detected in IWW of all the other plants. This
shows that the plant-specific species observed in AS were a fin-
gerprint defined by the correspondent IWW.

Fate of Immigrating Bacteria. Microbial species passively trans-
ported from IWW into the AS go through one of three possible
fates, or growth groups, defined by their behavior in the AS
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plant: growth, disappearance, or survival (see Materials and
Methods). The expected “growing species” are immigrating
species that can grow in AS and become part of the local AS
community; they are assumed to perform essential processes.
The expected “disappearing species” are immigrating species
that, in absence of mass-immigration, are considered to disap-
pear in AS due to factors such as washout, predation or die-off.
Finally, the expected “surviving species” are immigrating species
that likely slowly grow or disappear, depending on the opera-
tional conditions in the AS plant. The investigated AS plants had
an average total SRT of 17.9 d (10.5 to 25.4 d) (SI Appendix,
Table S1). Consequently, bacteria detected in AS throughout the
three-month survey were only present because they could grow in
the system (growing species) or because they were continuously
added by mass-immigration (surviving and disappearing species).
To investigate the fate of immigrating bacteria, we calculated
mass balances (see Materials and Methods) and partitioned 1,510
species of the entire dataset into the three abovementioned
growth groups (Dataset S1). Species with very low abundance in
both IWW and AS were considered “ambiguous” and were not
assigned to growth groups (see Materials and Methods).
The total biomass in terms of volatile suspended solids (VSS)

transported by IWW to the plants per day constituted a large
fraction (5% ± 1%) of the AS biomass already present in the 11
plants. The greatest fraction in IWW was composed of dis-
appearing species (298 ± 55 species) (Fig. 3A), making up on
average 72.5% ± 6.6 of the cumulative read abundance in IWW,

but only 12.4% ± 5.3 in AS, showing a drastic reduction. They
included some species in the IWW that, due to their high
abundance in IWW, had a high relative read abundance in AS as
well, such as species in the genera Trichococcus, Acidovorax,
Streptococcus, and Arcobacter (SI Appendix, Figs. S1A and S2). In
contrast, the growing species in AS (61.2% ± 9.3), as well as the
most abundant species in AS, were the smallest fraction in IWW
(Fig. 3A), constituting only 2.1% ± 1.1 on average (361 ± 46
species), most with low relative read abundance (<0.1%, SI
Appendix, Figs. S1B and S2). The growing species in AS included
also species assigned to functional guilds, as expected by their
role in the AS community. For example, 48 species in the dataset
were assigned as PAOs, important for biological phosphorus
removal, such as the genera Tetrasphaera, Dechloromonas, and
Candidatus Accumulibacter. Of these 48, 32 (67%) were grow-
ing, as expected from their potential role in AS plants. Glycogen-
accumulating organisms (GAOs), assumed to compete with the
PAOs, were also growing and included the genera Micropruina
and Candidatus Competibacter. The growing fraction included
also important species for nitrogen removal, such as nitrifiers
within the genera Nitrotoga and Nitrospira. Furthermore, some
filamentous genera such as Candidatus Microthrix and Candi-
datus Amarolinea were also growing (Dataset S1). Besides these
well-known important species for the AS plant, many others with
so-far poorly described or unknown functions were also growing.
Finally, the surviving species (63 ± 47 species) represented a low
cumulative read abundance fraction in both IWW and AS

Fig. 1. Community diversity in IWW and AS in each AS plant. (A) PCA plot. Every point represents a sample colored by plant and shaped by location, AS (n =
59), or IWW (n = 59). (B) Second PC-axis values plotted against each other for IWW/AS paired samples (n = 59) from the same plant. Line shows a linear
regression of PC2 values in AS on PC2 values in IWW with corresponding coefficient of determination (r2). (C) Community dissimilarity of IWW/AS paired
samples (points) shown for each plant and calculated by the abundance-weighted Bray-–Curtis index. Different colors refer to dissimilarity values calculated
for the following: IWW/AS paired samples from the same plant and the same sampling week (in red, n = 59); IWW/AS pairs of samples within the same plant
(in green, n = 59); and IWW/AS pairs of samples across different plants (in blue, n = 59).
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(4.4% ± 5.5 in IWW and 4.4% ± 3.9 in AS) (Fig. 3A) and were
characterized by both high and low relative read abundances (SI
Appendix, Fig. S2).
The three different growth groups showed some variation of the

cumulative read abundance in both IWW and AS samples from
plant to plant, especially in IWW (Fig. 3A). However, each species
included in the net-specific growth rate calculations had approx-
imately the same fate in AS across different plants (Fig. 3B). The
assignment to growth groups according to the cutoff (seeMaterials
and Methods) was consistent for each species, as 1,465 of 1,510
(97%) species in the entire dataset were assigned to the same
growth group. This provided robust conclusions about the fate of
immigrating species in AS plants with very similar design.

Prediction of Species Abundance in AS from IWW.Due to the species
composition similarities observed between paired IWW/AS
samples from the same plant, we aimed to predict the abundance
of species in AS based on IWW abundance. First, we performed
a global PLSR analysis across plants, regressing the AS abun-
dance table on the IWW abundance table (Fig. 4). The optimal
trade-off between model performance and complexity of our
data was represented by the use of 10 components (Fig. 4A).
While some degree of plant-specific community was observed
(Fig. 1), no distinct clustering by plant or outliers were detected
for the PLSR model (Fig. 4B). Before modeling, only species
that could be sufficiently quantified after applying filtering cri-
teria were included (see Materials and Methods), for IWW and
AS separately, across multiple plants. A large fraction of species
included in the AS dataset was below the filtering criteria in
IWW to be included into the PLSR model (Fig. 4C). This is
likely an artifact of sequencing depth, as the deep-sequenced
samples showed that species in AS were present in IWW, even
if in small amounts (Fig. 2B). After filtering, a total of 3,533
species were retained in the dataset, of which 844 were shared

between IWW and AS table, while 1,225 and 1,464 were only
included in the IWW and AS table, respectively (Fig. 4C). The
PLSR model performed well in predicting the relative abun-
dances of multiple species in the AS based on IWW relative
abundances. We considered the abundance of the species suffi-
ciently predictable when more than 40% of the variation of the
data can be explained by the model. Indeed, almost half (1,005 of
2,308) of the species included in the analysis from AS had an
explained variation (leave-one-out cross validation [LOOCV-
R2]) > 0.4 (Fig. 4E). Furthermore, many of the species included
from IWW (1535 of 2069) had a variable importance of pro-
jection score >1, indicating importance of the variable in the
PLSR projection (37) (Fig. 4D).
To disentangle the complexity of the predictions from the

PLSR model, we used an additional and more simplistic ap-
proach, the univariate model, which is a simple linear model. We
compared the predictions from both models for the 884 species

Fig. 2. Community detection in IWW and AS in each plant. (A) Top 200 most
abundant species in AS ranked by abundance (x-axis) for each plant (y-axis).
Red indicates presence (>1 read) and gray absence of a species in the cor-
respondent IWW. (B) Subset of plants (Randers and Aalborg West) in which
the same samples were deep sequenced (targeting 200,000 reads) and vi-
sualized as in A. (C) The unique species identified in AS of each plant with
median abundance >0.05% were checked for detection (>1 read) in IWW.
The y-axis shows the number of unique species identified in AS of each plant
and detected in IWW. The x-axis shows the source of IWW from which the AS
unique species were detected, either the IWW sample of the same plant or
more than two IWW samples from other plants. Points paired along the gray
lines represent the same plant (11 plants, 22 points in total). The P value
refers to the differences along the x-axis across all plants, and it is computed
from a paired Wilcoxon rank sum test.

Fig. 3. Fate of immigrating bacteria. (A) Cumulative read abundance per
growth group (growing, surviving, or disappearing in AS) at species level in
IWW and AS samples in 11 AS plants. Each point represents the average
across samples for each plant; bars represent SDs. The table in the middle
indicates the corresponding plant-wise average number of species for each
growth group (mean ± SD). (B) Consistency of calculated apparent net-
specific growth rate across AS samples. The x-axis includes all species in
the dataset for which it was possible to calculate an apparent net-specific
growth rate in at least three AS samples (n = 1,510). The y-axis shows the
relative fraction of AS samples for which a species was classified into each
growth group (growing, surviving, or disappearing in AS), colored by petrol
blue, ochre, and fuchsia, respectively. This relative fraction was calculated
based only on AS samples in which a net-specific growth rate could be cal-
culated; the total number of AS samples for calculating this may vary in each
plant for each species with a minimum of three samples.
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shared between IWW and AS (Fig. 5A). Species abundances well
predicted by the univariate model were also well predicted by
PLSR, as it can extract the same predictive associations as the
univariate model and even more complex relations. While most
predictable species (LOOCV-R2 > 0.4) were mainly explained by
the PLSR model compared to the univariate model, we could not
observe any clear relation between species abundance predict-
ability and their fate (Fig. 5A). We interpreted the predictions
from the two models in two different ways: “univocal associa-
tion,” when the highest variation in the data were explained by
the univariate model, and “interspecies association,” when the
highest variation was explained by the PLSR model. The
“univocal association” predictive pattern means that the abun-
dance of a certain species in AS can be predicted directly by its
own abundance in IWW. This implies that a species’ abundance
in AS is directly reflected and potentially determined by its
abundance in IWW. This was exemplified by the species Strep-
tococcus parasuis (Fig. 5B) in which the univariate model per-
formed remarkably better (LOOCV-R2 = 0.76) than the PLSR
model (LOOCV-R2 = 0.61). The “interspecies associations”
predictive pattern means that the abundance of a certain species
in AS can be predicted by the abundance of itself and/or other
species interacting in IWW. This means that the abundance of
multiple species in IWW correlates positively and negatively with
the abundance of a species in AS. This case was exemplified by
one of the most abundant species in the AS plants, Tetrasphaera
midas_s_5 (Fig. 5C). The relative read abundance of this species
in AS predicted from IWW by the PLSR model (LOOCV-R2 =
0.61) performed much better than the univariate model (LOOCV-
R2 = 0.09). Thus, the abundance in AS of Tetrasphaera midas_s_5

was best described by an increase of abundances of other species
in IWW.

Linking Functional Potential and Fate of Immigration to Predictability.
Species belonging to functional guilds (such as filamentous or-
ganisms, PAOs, GAOs, and nitrifiers) have central roles in AS
processes, but the effect of immigration on them is unknown. We
investigated how the abundance of these species can be better
predicted by the two predictive patterns (models), univocal or
interspecies association, that we identified. Moreover, we took
into account the fate of these species in AS, in light of the mass
balance calculations performed above. Most of the species (86%,
305 of 352) belonging to the known functional guilds were able to
grow in AS (Fig. 6 and Dataset S1), as expected. For most species,
the explained variation (LOOCV-R2) of the PLSR model was
higher than the univariate model (Fig. 6). This was the case for
Tetrasphaera midas_s_5, Candidatus. Amarolinea midas_s_1, and
Nitrospira defluvii, which are species of particular interest for the
function of AS plants due to their high abundance in AS and the
role that they are assumed to perform. The “interspecies associ-
ations” in IWW were the main responsible for affecting the
abundance of these species in AS (Fig. 6). However, a few other
species, such as Dechloromonas midas_s_1978 among PAOs and
Candidatus Microthrix midas_s_2 among filamentous bacteria,
obtained a similar explained variation in both models. The abun-
dance of some species belonging to the same functional guilds was
predicted by different patterns. For example, the abundance in AS
of Microlunatus phosphovorus and Tetrasphaera elongata (both
PAOs) was predicted mainly by “univocal association” and “in-
terspecies associations” in IWW, respectively.

Fig. 4. PLSR model summary. (A) Selection of the optimal number of components used for the PLSR model based on cross validation. For the final PLSR model
described here, 10 components were chosen, indicated by the vertical dotted line. (B) Biplot of the distance to the model of the decomposition matrix of the
abundance in IWW (X-matrix, x-axis) and in AS (Y-matrix, y-axis) for each IWW/AS paired sample (points, n = 59). The dotted line shows the critical limit for
outliers, defined at 99% confidence level. (C) Venn diagram shows the number of unique species from the entire dataset (after filtering criteria) included in
the decomposition matrix of abundance in IWW and AS of the PLSR model. (D) Variable importance of projection (VIP) score plot shows the importance of
individual IWW species in generally predicting the AS abundance. (E ) The predictive performance of the PLSR model for each species is shown as the
LOOCV-R2.
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Discussion

The open-system character of full-scale WWTPs forces recog-
nition of the active role microbial immigration plays in the as-
sembly of AS microbial communities. The importance has been
widely investigated, but past approaches have yielded contradictory

results, and a consensus about the role of immigration is still
missing. Experimental limitations in previous studies may explain
the contradictory results. Early studies of WWTP modeling ac-
knowledged the importance of biomass in IWW (14–17). How-
ever, in the absence of powerful microbiological detection
methods, IWW biomass was expressed as VSS (e.g., ref. 17),
estimated from respirometric assays (16), or was neglected in the
models due to its assumed low concentration compared to the
biomass produced in AS (38). More recent studies are either
based on the inference of immigration patterns without actual
analyses of taxa in both IWW and AS communities (39), on the
inference of taxa abundance in influent from AS community data
(typical of theoretical model; SI Appendix, Supplementary Dis-
cussion) (28), or on the application of DNA-based methods with
low resolution [such as Terminal Restriction Fragment Length
Polymorphism (4) or pyrosequencing (8, 24, 40)].
The limit of microbiological methods in detecting bacteria has

been a problem in many immigration-related studies, resulting in
focusing only on the abundant taxa in the influent. For example,
Lee et al. (8) used a sequencing depth of only ∼500 reads per
sample (in contrast to ours of >40,000 reads on average per
sample). Thus, they found only a small fraction of the opera-
tional taxonomic units (4.3 to 9.3%) shared between IWW and
AS and that the communities were very different in terms of
diversity, composition, and temporal variation. Gonzalez-
Martinez et al. (24) reached the same conclusion investigating
alpha and beta diversity of IWW and AS adopting a similar
pyrosequencing approach with low resolution. The higher reso-
lution of our high-throughput amplicon sequencing revealed that
while the AS and IWW microbial communities initially appeared
very different from each other in terms of abundance, most
species were shared when deep sequencing was performed. In
combination with mass balance calculations, multivariate statis-
tics, and high-accuracy species-level resolution using the new
MiDAS ecosystem-specific reference database and taxonomy
(35), we could reveal the dramatic effect of mass-immigration
also for the low-abundant species in IWW, as seen by the
abundance prediction by PLSR. Other studies have also sug-
gested that mass-immigration could be more important than
previously recognized (13) and revealed the importance of mass-
immigration for low-abundant species, even though focusing only
on the nitrifiers functional guild (18).
The AS composition of each plant was reflected by the com-

position of its corresponding source community (both at overall
community level and for unique species), suggesting source–sink
dynamics are taking place between IWW and AS, as described by
Leibold et al. for the mass effect (19). Continuous unidirectional
mass flow of immigrating bacteria from IWW into AS plants
(small spatial scale) contributes to homogenizing dispersal
mechanisms between IWW and AS. This has been observed in
natural aquatic systems in which mass effects can be expected
when connectivity among habitats is very high (41, 42) but not yet
reported for full-scale AS WWTPs. The effect of different source
communities (IWW) may explain common observations in full-
scale AS plants of temporal and spatial abundance variations of
microbial communities (8). For example, IWW likely contributes
to the unique microbial community composition and variation
over time (13 y) we reported for more than 20 Danish full-scale
enhanced biological phosphorus removal (EBPR) AS plants
(35). Moreover, mass-immigration might be responsible for the
abundance variations of process-critical bacteria (e.g., genus Ca.
Microthrix) over time and rank abundance variations of different
genera within a functional guild (e.g., the PAO genera Ca.
Accumulibacter, Tetrasphaera, and Dechloromonas) in different
AS plants. Consequently, stochastic processes seem important
for the differences observed in community structure in AS plants
across the world, as was recently proposed (30).

Fig. 5. Prediction by univocal association or interspecies associations of
species of interest. (A) Codistribution of LOOCV-R2 from the PLSR model
(x-axis) and univariate model (y-axis) for species abundance in AS, based on
IWW abundance. Every point (n = 844) represents a species colored by the
growth group (growing, surviving, or disappearing). Ambiguous refers to
species that could not be assigned to a growth group. Colored areas indicate
good predictability, that is, high explained variance (LOOCV-R2 > 0.4) for
either the PLSR model (light-red area) or the univariate model (light-blue
area). (B and C) Two different species of interest highlighting the two dif-
ferent predictive patterns by which a species’ abundance can be predicted in
AS (n = 59). On the x-axis is shown the standardized relative abundance
(A.U.) measured in AS and on the y-axis the predicted standardized relative
abundance (A.U.) in AS based on IWW standardized abundance either from
the PLSR model (upper plots) or the univariate model (lower plots). The
associated explained variance (LOOCV-R2) is provided in the bottom right
corner of the plot. B shows a univocal association for Streptococcus parasuis.
Here, the correlation between standardized measured and predicted rela-
tive abundance in AS is higher in the univariate model than in the PLSR
model (n = 59). C shows the case where interspecies interactions in IWW are
responsible for the prediction of Tetrasphaera midas_s_5 abundance in AS
(n = 59). Here, the PLSR model outperforms the univariate model.
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Fig. 6. Abundance prediction of functional guilds. The plot combines the characteristics investigated in this study (relative read abundance, fate, and
predictability) for species belonging to known functional guilds (filamentous organisms, PAOs, GAOs, and nitrifiers). On the y-axis, to the extreme left, a
subset of species belonging to functional guilds is shown. Following on the left, a heat map showing, for each species, the median relative read abundance
(%) in IWW and AS (x-axis) sorted by relative abundance in AS is shown. Only species with abundance higher than 0.01% in either IWW or AS across all
samples are shown, for a total of 78 out of 352 species belonging to functional guilds shown in the plot. In the middle, heat map showing the growth group
(or fate) assigned to each species (in fuchsia: disappearing species; in ochre: surviving species; and in petrol blue: growing species). On the right, barplot of the
variance (LOOCV-R2, x-axis) explained by the PLSR model (in orange) and the univariate model (in blue) for each species. Dotted vertical line indicates the
threshold for predictability (LOOCV-R2 > 0.4), as explained in Results. To the extreme right, grouping of species according to the functional guilds.
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Mass balance calculations provided overall metrics indicating
that the total amount of biomass immigrating per day repre-
sented a large proportion of biomass already present in AS (5%),
which is rarely recognized. Furthermore, mass balance calcula-
tions were critical to identify the fate of immigrating species in
the AS (growing, disappearing, or surviving). A strong rescue-
effect caused by continuous mass-immigration was likely re-
sponsible for the relatively high cumulative proportion of dis-
appearing species in AS (12.6% of biomass of AS) (9, 19).
Disappearing species belonged to the genera Arcobacter, Acid-
ovorax, Trichococcus, Streptococcus, and Blautia, which are well-
known to inhabit sewers (e.g., 43). We believe that these species
are considered nongrowing in AS plants because they are
“maladapted” (5), likely due to competitive exclusion (44, 45),
predation (46, 47), or because of random death or lysis. How-
ever, the continuous immigration was responsible for keeping
them abundant in the AS plant even if they were not taking part
in the process, as indicated by their negative net-specific growth
rate. Whether disappearing species may be active in the AS
process before they disappear is not known (9). The growing
fraction constituted the majority of the biomass in the AS (61.2%
cumulative read abundance) and included species belonging to
known functional guilds that are expected to grow in AS. The
growing species had only low or very low abundances in the IWW
and could easily be overlooked without deep sequencing. Their
fate indicated that they were randomly transported by the IWW
into the AS systems in which they could finally thrive and take
part in the wastewater treatment process as a result of species
sorting carried out by the design and operation of the plants.
The fate of each species proved to be consistent across the AS

plants of this study. This consistency was ensured by investigating
AS plants with very similar process design, that is, the EBPR
process, and similar operations, that is, relatively long SRTs
(10.5 to 25.4 d). Comparing the effect of different source com-
munities (IWW) in plants with different process designs, such as
EBPR and simple carbon removal plants, and/or different SRTs,
such as long and SRTs of a few days, could lead to biased or
inconclusive results as the fate of many immigrating species
would vary according to the available local niche. However, it
would be very interesting to investigate further the effect of
mass-immigration in such plants, which would likely reveal a
different fate for many species. We hypothesize the results of
such a study would show an even greater effect of mass-
immigration than found in our study, as plants with short SRT
are regarded more vulnerable to disturbances such as dispersal
and colonization of invaders (25, 48, 49).
In our study, the PLSR approach was able to capture the

multivariate nature of the data, including collinearity of species,
which is otherwise difficult to tackle. PLSR provided good per-
formance and interpretability on our data. Alternative methods
widely used in microbial ecology include redundancy analysis and
correspondence analysis; however, they have limitations for our
type of dataset and scope (SI Appendix, Supplementary Discus-
sion). PLSR revealed that the abundance of most species in AS
could be predicted from the abundance in IWW, either from the
same species (“univocal association”) or by other species (“in-
terspecies association”). Both cases represent a perspective to
interpret microbial immigration in AS plants. Interspecies asso-
ciation was found to be the most common predictive pattern for
most species, including functional guilds, in our dataset. This
indicated the presence of interspecies abundance correlation in
IWW and AS. Even if positive and negative correlations might
indicate species co-occurrence and coexclusion, we do not di-
rectly imply any metabolic or trophic connection between those
species; however, this aspect cannot be excluded. Interspecies
associations also suggest the immigration of species from a
similar source (coimmigration) along the sewer network. More-
over, they might indicate that microbial processes occurring

upstream in the sewer systems induce the increase or decrease of
abundance for certain species in IWW. In addition, it is possible
that minor variations in the operation of the EBPR plants af-
fected the relative abundances of these species, also influencing
the predictions across plants. It is not clear yet why and how
these interspecies interactions occur, and further studies
are needed.
The AS microbial community structure was determined by

both stochastic and deterministic factors, as agreed in the “rec-
onciliation” of niche and neutral theory of community assembly
(2, 50). As reviewed by Zhou and Ning (6), plenty of studies have
addressed the importance of either niche or neutral theory in the
past decades. A common challenge is represented by the diffi-
culty to reasonably reject one or another theory, given for ex-
ample that different processes (or assumptions) can yield very
similar patterns. Moreover, as discussed above, part of this long-
standing literature relies on outdated methodological ap-
proaches. We propose that in AS plants, deterministic and sto-
chastic forces act in a hierarchical assembly, in similar way as
these forces occur at macroscale. First, a dispersal filter (i.e., mass-
immigration of the IWW source community) is the key player at
the metacommunity level and determines the overall AS species
composition (taxa presence/absence) and partially the species
abundance (mass effect). Then, the environmental filter (i.e., process
design [e.g., EBPR] and operation [e.g., SRT] of AS plants) de-
termines the fate of immigrating species. The combined effect
will determine the structure of microbial communities in AS. Our
study shows that mass-immigration played a much greater role
than previously believed and that it is important to distinguish
between the fate of species (growth groups) when understanding
and investigating the impact of immigration.
The importance of immigration seems to vary in different

engineered ecosystems according to the actual species sorting
mechanisms. Immigration was recorded to play a minor role in
granular anaerobic sludge bioreactors (25) whereas it had a great
impact in anaerobic digesters at WWTPs treating surplus AS and
primary sludge (51). The latter is also an example of within-
WWTP immigration, and other studies investigating the trans-
fer (immigration) of biomass across full-scale plant’s units are
available, although they reach contrasting conclusions about
immigration (45, 52–54). Therefore, specific conclusions drawn
for one specific system (e.g., the AS process) cannot easily be
extrapolated to another treatment system because the assembly
forces (e.g., source communities, species sorting, and mass ef-
fect) will have different strengths.
The current design and operation of full-scale AS WWTP is

based on the traditional Baas Becking and Beijerinck’s deter-
ministic approach that “Everything is everywhere, but, the en-
vironment selects” (21, 22). The importance of microorganisms
in the IWW is often acknowledged with the terms “seeding” or
“inoculum” for the AS community (14, 43). It is important to
review this thinking. Our results showed that mass-immigration is
responsible for both the presence and abundance of most species
in the AS, especially for those species (the disappearing) that are
not fit for it. Secondly, the abundance of species in IWW, no
matter at what level, contributes to the abundance (and predic-
tion) of AS microbial communities. Therefore, mass-immigration,
and its inherent stochasticity, has proved to be more important for
the AS bacterial microbial communities than previously believed.
This highlights the need to revise the way we currently understand,
design, and manage microbial communities in AS WWTPs. While
the optimization of AS communities through operational condi-
tions remains relevant, more focus needs to be on the effect of
immigration in WWTPs, considering AS and IWW as a unique
entity (open system). The source community is essential for ef-
fective process treatment, challenging us to manage AS commu-
nities directly in sewer systems.
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Materials and Methods
Sample Collection. A total of 11 full-scale AS plants in Denmark were sampled
for IWW and AS over 3 mo from October to December 2014. All plants were
characterized by phased-isolation oxidation ditch also called Bio-denipho
technology (Kruger, Veolia Water Technologies), defining very similar pro-
cess designs. They mainly treated municipal wastewater with biological ni-
trogen and/or enhanced biological phosphorus removal configuration
(EBPR). The plants’ location was spread across Denmark. All the main char-
acteristics of the AS plants and the correspondent number of samples taken
from each are summarized in SI Appendix, Table S2. Samples were collected
every second week, with slight time differences between plants due to
variation in their individual sampling programs or dry-weather days. Sam-
ples for microbiological analysis were collected as follows: IWW samples
were collected as 50-mL subsamples from a 24-h flow proportional sampler,
if present, and AS samples consisted of 2-mL subsamples of 50-mL grab
samples collected from the aeration tank. IWW and AS samples were taken
in duplicates for every sampling week for Aalborg West and Skive plants. All
subsamples were stored at −20 °C until further analysis. AS plants design and
process information about the plants and IWW were obtained from the
plant operators for establishing microbial mass balances, including the fol-
lowing: volume of process tanks, amount of suspended solids in the process
tanks, IWW flow, chemical oxygen demand (COD) of IWW, and effluent (SI
Appendix, Table S1).

Amplicon Sequencing Workflow. Bacterial DNA extraction and 16S rRNA gene
amplicon sequencing were performed for both IWW and AS samples. Prior to
DNA extraction, samples were thawed, vortexed, and homogenized using 15
mL for each IWW sample (or 30 mL for duplicate samples) and 0.5 mL for AS
samples; the homogenizationwas performedwith overhead stirrer (Heidolph
RZR 2020) with second gear, speed 9,moving 10 times from top to bottom the
sample inside the tissue grinder. Homogenized IWW samples were then
vacuum filtered through a 0.2-μm polycarbonate membrane, supported by
glass fiber filters, by means of a DHI filtration manifold (Carbon 14 Cen-
tralen). Cells from IWW samples immobilized on the membrane’s surface,
and 0.5 mL homogenized AS samples were later processed according to the
same DNA extraction and amplicon sequencing method, as described by ref.
55. DNA extraction was performed using the FastDNA Spin Kit for soil (MP
Biomedicals), repeating the bead beating four times instead of once. Ge-
nomic DNA was quantified with the Qubit 2.0 fluorometer (Invitrogen) using
the Qubit double stranded (ds) DNA BR Assay Kit (Thermo Fischer Scientific).
Amplicon sequencing was performed targeting region V1-V3 of 16S rRNA
gene using a modified procedure from Caporaso et al. (56). Briefly, 10 ng of
extracted DNA was used as a template. The PCR (25 μL) contained dNTPs (400
μM of each), MgSO4 (1.5 mM), Platinum Taq DNA polymerase High Fidelity (2
mU), 1X Platinum High Fidelity buffer (Thermo Fisher Scientific), and a pair
of barcoded library adaptors (400 nM). V1-V3 primers used had the fol-
lowing sequences: 27F 5′-AGAGTTTGATCCTGGCTCAG-3′ (57); 534R 5′-ATT
ACCGCGGCTGCTGG-3′ (58). The PCR amplification was performed by a
thermo cycler with the following settings: initial denaturation at 95 °C for
2 min, 30 cycles of 95 °C for 20 s, 56 °C for 30 s, 72 °C for 60 s, and final
elongation at 72 °C for 5 min. All PCR reactions were run in duplicate and
pooled afterward. The amplicon libraries were purified using the Agencourt
AMPure XP bead protocol (Beckmann Coulter) with the following excep-
tions: the sample/bead solution ratio was 5/4, and the purified DNA was
eluted in 23 μL nuclease-free water. The amplicon library concentration was
then measured with Qubit dsDNA HS Assay Kit (Thermo Fischer Scientific) on
a Qubit 2.0 fluorometer (Invitrogen), and the quality was evaluated with a
TapeStation 2200 system using D1000 ScreenTape (Agilent Technologies).
Amplicon libraries were then pooled in equimolar concentrations. The li-
brary pool was diluted to a final concentration of 4 nM prior paired-end (2 ×
300 bp) sequencing on a MiSeq (Illumina). A subset of IWW samples from
Aalborg West and Randers AS plants were prepared in the same way but
sequenced deeper to evaluate the effect of technical detection limitations.
All raw amplicon reads generated by MiSeq were processed using the
AmpProc5.0 workflow (https://github.com/eyashiro/AmpProc) which gener-
ated amplicon sequence variants (ASVs). The ASVs were mapped to the full-
length ASVs (FL-ASVs) from the database generated by Dueholm and col-
leagues (59) which is specific for wastewater treatment ecosystems and uses
MiDAS 3 taxonomy (35). We chose to use the species-level classification to
improve the read counts available for each investigated taxa. The classifi-
cation at species level used in the database is based on 98.7% sequence
identity as recommended by Yarza et al. (60) When species-level classifica-
tion was not available, the taxonomic classification was assigned by com-
bining the ASV classification with the first available taxonomic level (e.g.,
genus). Sequencing data are available online at European Nucleotide

Archive (ENA) as subset of the project number PRJEB28796 (https://www.ebi.
ac.uk/ena/browser/view/PRJEB28796) as indicated in Dataset S2. The se-
quences with higher sequencing depth are available online at National Center
for Biotechnology Information (NCBI) with project number PRJNA715652
(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA715652/).

Data Analysis. Data were imported into R v3.6.2 (https://www.R-project.org/)
using RStudio IDE v1.2.5033 (https://www.rstudio.com/). Prior to analysis,
samples with less than 10,000 reads were discarded upfront, and duplicate
samples from the same plant and sampling week were combined by taking
the median value of relative read abundance for each species. After filter-
ing, only complete sample pairs of IWW and AS were retained. This resulted
in a dataset of 118 samples from eleven different AS plants (SI Appendix,
Table S2). Beta diversity was examined on relative abundance transformed
data by the abundance-weighted Bray–Curtis index (61) and PCA. Addi-
tionally for PCA, all species not observed in more than 25% (n = 29) of
samples were removed to reduce noise, and the remaining data were
square-root transformed and standardized to zero mean and unit variance.

To perform PLSR, the mdatools v0.10.1 package (62) was used. Prior to
analysis, the data were first Hellinger transformed. The data was then fil-
tered separately for IWW and AS as follows: for each species, it was first
determined whether it was detected in a given plant, defined as being
present (read count > 1) in >50% of samples from that plant. Secondly, the
fraction of plants in which a species was detected should be more than 25%
(n > 2). After filtering, species not detected in more than 25% (n > 14) of
samples were dichotomized to −1 (absent) and 1 (present). The abundances
of the remaining species were standardized to zero mean and unit variance.
To evaluate the performance and complexity (i.e., number of components)
of the PLSR model, we used the coefficient of determination (R2) computed
from LOOCV-R2, which represents the variance of the data explained by
the model.

Apparent Net-Specific Growth Rate Calculations. To evaluate the fate of im-
migrating bacteria within the AS communities, we calculated the apparent
net-specific growth rate (k) of every species. We used mass balance calcu-
lations between IWW and AS samples, revising the approach described in
Saunders et al. (9) as follows.

We used the following assumptions: the apparent net-specific growth rate
can be described as a first-order process; the biomass concentration of a
j-species (Xj) can be described by both the relative read abundance of a
j-species (pj) and the total number of cells (n); and the biomass removed with
effluent is typically very little, as seen by the COD concentrations in SI Ap-
pendix, Table S1, and can be neglected. Under these assumptions, the mass
balance equation for every j-species inside the AS process tank of the plant is
calculated as follows:

VPT

d(pAS,j · nAS)
dt

= QIWW ·pIWW ,j ·nIWW − QSP ·pSP,j ·nSP

+ kj · pAS,j ·nAS ·VPT , [1]

where

• VPT = volume of process tank [m3]
• pAS,j = relative read abundance of j-species in AS [%]
• nAS = total number of cells in AS [cellsm3 ]
• QIWW = flow rate of IWW [m3

d ]
• pIWW,j = relative read abundance of j-species in IWW [%]
• nIWW = total number of cells in IWW [cellsm3 ]
• QSP = flow of surplus sludge [m3]
• pSP,j = relative read abundance of j-species in surplus sludge [%]
• nSP = total number of cells in surplus sludge [cellsm3 ] and
• kj = apparent net-specific growth rate of the j-species [d−1].

Since at steady state there is no net variation over time of the number of

cells in AS (dnAS,j

dt = 0), Eq. 1 can be rewritten as follows:

QIWW ·pIWW ,j ·nIWW − QSP ·pSP,j ·nSP + kj · pAS,j ·nAS ·VPT = 0. [2]

Rearranging Eq. 2 by applying the definition of HRT (hydraulic retention
time) and SRT (sludge retention time, in which the biomass removed with

the effluent is neglected), which are HRT = VPT
QIWW

[d] and SRT =
VPT ·pAS,j ·nAS

QSP ·pSP,j ·nSP
[d] respectively, the apparent net-specific growth rate (kj) of

every j-species observed in the plant is calculated as follows:
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kj = 1
SRT

− 1
HRT

·
pIWW ,j · nIWW

pAS,j · nAS
[d−1]. [3]

The apparent net-specific growth rate of every species in the plant is thus
determined by both amplicon data and key design and process information.
In particular, amplicon sequencing data are expressed by pAS,j and pIWW ,j

terms, while the other parameters are calculated or measured as follows:

• SRT, total sludge retention time: VSSAS · VPT
Yobs · QIWW · ðCODIWW �CODeffl Þ [d],

where

- VSSAS volatile suspended solids in AS [g/L]
- VPT volume of process tank [m3]
- Yobs observed AS yield for heterotrophs from municipal wastewaters, ’

0.43 gVSS
gCOD (20)

- QIWW flow rate of IWW [m3
d ]

- CODIWW chemical oxygen demand of IWW [mg/L]
- CODeffl chemical oxygen demand in effluent [mg/L]
• HRT, hydraulic retention time: VPT

QIWW
½d�

• nIWW, total number of cells in IWW: 1.4 ·1014 [cellsm3 ] (20)
• nAS, total number of cells in AS: VSSAS ·NAS [cellsm3 ],

where

- NAS number of cells in AS, 0.5 ·1015 [ cells
kgVSS].

According to Eq. 3, bacterial species can assume values of apparent net-
specific growth rate from minus infinite to 1/SRT, that is, k = { − Inf ; 1=SRT }.
In particular, Eq. 3 allows to distinguish the fate of immigrating bacteria into
three different growth groups:

• “growing,” with a clearly positive growth rate (k > 0), expected to grow
in AS;

• “disappearing,” with a clearly negative growth rate (k < 0), expected to
disappear from AS systems in absence of immigration and;

• “surviving,” with a growth rate of ∼0 (k ’ 0), expected to either grow or
disappear depending on the stringency of the plant parameters.

These growth groups are all characterized by species with a relative read
abundance in IWW and/or AS higher than 0.05%. Species with lower

abundance are, instead, defined here as “ambiguous,” because we consider
that such a low abundance cannot be used to clearly assign these species to a
growth group.

The distinction into three different growth groups, instead of simply two
based on the theoretical cutoff of k = 0, arises to provide a more realistic
situation. It is expected that most immigrating species can be clearly grow-
ing or clearly disappearing in AS and that their fate is consistent across AS
plants with similar designs. However, the fate of some immigrating species
may vary according to the stringency of the plant’s design. These species are
neither growing nor disappearing in AS but rather surviving with an ap-
parent net-specific growth rate distributed around 0. This implied that in
some plants, the surviving species are growing, while in others they are
disappearing. Indeed, when theoretically k = 0, Eq. 3 is:

pAS,j · nAS = SRT
HRT

·pIWW ,j · nIWW . [4]

For a given sample pair of IWW and AS with known SRT and HRT, Eq. 4
becomes a linear function of the IWW abundance with an intercept through
0. Sample pairs from the same plant are then used to construct an interval of
AS abundances for that particular plant, defining the abundance of the
surviving species. We used the fifth and 95th percentile, assuming that the
variation of AS abundances of surviving species is similar across plants with
similar process design, and it is 10%. In this way, species with AS abundances
above the interval are considered clearly growing, while species with AS
abundances below the interval are considered clearly disappearing. In this
dataset, every species was assigned to a certain growth group when for that
species, the growth group was observed in >50% of IWW-AS sample pairs
(Dataset S1).

Data Availability. Amplicon sequencing data have been deposited in ENA
project PRJEB28796 (https://www.ebi.ac.uk/ena/browser/view/PRJEB28796)
and National Center for Biotechnology Information PRJNA715652 (https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA715652/).
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4. I. D. Ofiţeru et al., Combined niche and neutral effects in a microbial wastewater

treatment community. Proc. Natl. Acad. Sci. U.S.A. 107, 15345–15350 (2010).
5. E. B. Graham, J. C. Stegen, Dispersal-based microbial community assembly decreases

biogeochemical function. Processes 5, 65 (2017).
6. J. Zhou, D. Ning, Stochastic community assembly: Does it matter in microbial ecology?

Microbiol. Mol. Biol. Rev. 81, e00002-17 (2017).
7. D. Ning, Y. Deng, J. M. Tiedje, J. Zhou, A general framework for quantitatively as-

sessing ecological stochasticity. Proc. Natl. Acad. Sci. U.S.A. 116, 16892–16898 (2019).
8. S. H. Lee, H. J. Kang, H. D. Park, Influence of influent wastewater communities on

temporal variation of activated sludge communities. Water Res. 73, 132–144 (2015).
9. A. M. Saunders, M. Albertsen, J. Vollertsen, P. H. Nielsen, The activated sludge eco-

system contains a core community of abundant organisms. ISME J. 10, 11–20 (2016).
10. M. Kinnunen et al., A conceptual framework for invasion in microbial communities.

ISME J. 10, 2773–2775 (2016).
11. O. C. Shanks et al., Comparison of the microbial community structures of untreated

wastewaters from different geographic locales. Appl. Environ. Microbiol. 79,

2906–2913 (2013).
12. Y. Zha, M. Berga, J. Comte, S. Langenheder, Effects of dispersal and initial diversity on

the composition and functional performance of bacterial communities. PLoS One 11,

e0155239 (2016).
13. D. Frigon, G. Wells, Microbial immigration in wastewater treatment systems: Ana-

lytical considerations and process implications. Curr. Opin. Biotechnol. 57, 151–159

(2019).
14. M. Henze, The influence of raw wastewater biomass on activated sludge oxygen

respiration rates and denitrification rates. Water Sci. Technol. 21, 603–607 (1989).
15. M. Henze, Characterisation of wastewater for modeling of activated sludge pro-

cesses. Water Sci. Technol. 25, 1–15 (1992).
16. G. H. Kristensen, P. E. Jorgensen, M. Henze, Characterization of functional microor-

ganism groups and substrate in activated sludge and wastewater by AUR, NUR and

OUR. Water Sci. Technol. 25, 43–57 (1992).
17. B. E. Rittmann, P. L. McCarty, Environmental Biotechnology: Principles and Applica-

tions (McGraw-Hill, ed. 1, 2001).

18. S. Jauffur, S. Isazadeh, D. Frigon, Should activated sludge models consider influent

seeding of nitrifiers? Field characterization of nitrifying bacteria. Water Sci. Technol.

70, 1526–1532 (2014).
19. M. A. Leibold et al., The metacommunity concept: A framework for multi-scale

community ecology. Ecol. Lett. 7, 601–613 (2004).
20. Metcalf & Eddy; G. Tchobanoglous, H. D. Stensel, R. Tsuchihashi, F. L. Burton,

Wastewater Engineering: Treatment and Resource Recovery (McGraw-Hill Education,

ed. 5, 2014).
21. M. A. O’Malley, ‘Everything is everywhere: But the environment selects’: Ubiquitous

distribution and ecological determinism in microbial biogeography. Stud. Hist. Philos.

Biol. Biomed. Sci. 39, 314–325 (2008).
22. J. B. H. Martiny et al., Microbial biogeography: Putting microorganisms on the map.

Nat. Rev. Microbiol. 4, 102–112 (2006).
23. J. l. C. Jansen, E. Arvin, M. Henze, P. Harremoes, Wastewater Treatment - Biological

and Chemical Processes (Polyteknisk Forlag, ed. 4, 2019).
24. A. Gonzalez-Martinez et al., Comparison of bacterial communities of conventional

and A-stage activated sludge systems. Sci. Rep. 6, 18786 (2016).
25. M. Ali et al., Importance of species sorting and immigration on the bacterial assembly

of different-sized aggregates in a full-scale aerobic granular sludge plant. Environ.

Sci. Technol. 53, 8291–8301 (2019).
26. A. K. Winegardner, B. K. Jones, I. S. Y. Ng, T. Siqueira, K. Cottenie, The terminology of

metacommunity ecology. Trends Ecol. Evol. 27, 253–254 (2012).
27. R. Mei, W.-T. Liu, Quantifying the contribution of microbial immigration in en-

gineered water systems. Microbiome 7, 144 (2019).
28. W. T. Sloan et al., Quantifying the roles of immigration and chance in shaping pro-

karyote community structure. Environ. Microbiol. 8, 732–740 (2006).
29. J. C. Stegen et al., Quantifying community assembly processes and identifying fea-

tures that impose them. ISME J. 7, 2069–2079 (2013).
30. L. Wu et al.; Global Water Microbiome Consortium, Global diversity and biogeogra-

phy of bacterial communities in wastewater treatment plants. Nat. Microbiol. 4,

1183–1195 (2019).
31. M. Stocchero et al., PLS2 in metabolomics. Metabolites 9, 51 (2019).
32. O. Libiger, N. J. Schork, Partial least squares regression can aid in detecting differ-

ential abundance of multiple features in sets of metagenomic samples. Front. Genet.

6, 350 (2015).
33. P. Aarnio, P. Minkkinen, Application of partial least-squares modelling in the opti-

mization of a waste-water treatment plant. Anal. Chim. Acta 191, 457–460 (1986).

10 of 11 | PNAS Dottorini et al.
https://doi.org/10.1073/pnas.2021589118 Mass-immigration determines the assembly of activated sludge microbial communities

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
26

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2021589118/-/DCSupplemental
https://www.ncbi.nlm.nih.gov/bioproject/PRJEB28796
https://www.ebi.ac.uk/ena/browser/view/PRJEB28796
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA715652
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA715652/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA715652/
https://doi.org/10.1073/pnas.2021589118


www.manaraa.com

34. A. L. Amaral, E. C. Ferreira, Activated sludge monitoring of a wastewater treatment
plant using image analysis and partial least squares regression. Anal. Chim. Acta 544,
246–253 (2005).

35. M. Nierychlo et al., MiDAS 3: An ecosystem-specific reference database, taxonomy
and knowledge platform for activated sludge and anaerobic digesters reveals species-
level microbiome composition of activated sludge. Water Res. 182, 115955 (2020).

36. M. Nierychlo et al., Candidatus Amarolinea and Candidatus Microthrix are mainly
responsible for filamentous bulking in Danish municipal wastewater treatment
plants. Front. Microbiol. 11, 1214 (2020).

37. I. G. Chong, C. H. Jun, Performance of some variable selection methods when mul-
ticollinearity is present. Chemom. Intell. Lab. Syst. 78, 103–112 (2005).

38. M. Henze, W. Gujer, T. Mino, M. C. M. van Loosdrecht, Activated Sludge Models
ASM1, ASM2, ASM2d and ASM3 (IWA Publishing, 2000).

39. J. S. Griffin, G. F. Wells, Regional synchrony in full-scale activated sludge bioreactors
due to deterministic microbial community assembly. ISME J. 11, 500–511 (2017).

40. D. C. Vuono et al., Disturbance and temporal partitioning of the activated sludge
metacommunity. ISME J. 9, 425–435 (2015).

41. J. Heino et al., Metacommunity organisation, spatial extent and dispersal in aquatic
systems: Patterns, processes and prospects. Freshw. Biol. 60, 845–869 (2015).

42. E. S. Lindström, S. Langenheder, Local and regional factors influencing bacterial
community assembly. Environ. Microbiol. Rep. 4, 1–9 (2012).

43. S. L. McLellan, A. Roguet, The unexpected habitat in sewer pipes for the propagation
of microbial communities and their imprint on urban waters. Curr. Opin. Biotechnol.
57, 34–41 (2019).

44. S. Louca, M. Doebeli, Transient dynamics of competitive exclusion in microbial com-
munities. Environ. Microbiol. 18, 1863–1874 (2016).

45. S. Günther et al., Species-sorting and mass-transfer paradigms control managed
natural metacommunities. Environ. Microbiol. 18, 4862–4877 (2016).

46. Y. Hirakata et al., Effects of predation by protists on prokaryotic community function,
structure, and diversity in anaerobic granular sludge. Microbes Environ. 31, 279–287
(2016).

47. O. H. Shapiro, A. Kushmaro, A. Brenner, Bacteriophage predation regulates microbial
abundance and diversity in a full-scale bioreactor treating industrial wastewater.
ISME J. 4, 327–336 (2010).

48. D. C. Vuono, J. Munakata-Marr, J. R. Spear, J. E. Drewes, Disturbance opens recruit-
ment sites for bacterial colonization in activated sludge. Environ. Microbiol. 18, 87–99
(2016).

49. F. A. Meerburg et al., High-rate activated sludge communities have a distinctly dif-
ferent structure compared to low-rate sludge communities, and are less sensitive
towards environmental and operational variables. Water Res. 100, 137–145 (2016).

50. D. R. Nemergut et al., Patterns and processes of microbial community assembly. Mi-
crobiol. Mol. Biol. Rev. 77, 342–356 (2013).

51. R. H. Kirkegaard et al., The impact of immigration on microbial community compo-
sition in full-scale anaerobic digesters. Sci. Rep. 7, 9343 (2017).

52. G. F. Wells et al., Microbial biogeography across a full-scale wastewater treatment
plant transect: Evidence for immigration between coupled processes. Appl. Microbiol.
Biotechnol. 98, 4723–4736 (2014).

53. R. Mei, J. Kim, F. P. Wilson, B. T. W. Bocher, W.-T. Liu, Coupling growth kinetics
modeling with machine learning reveals microbial immigration impacts and identifies
key environmental parameters in a biological wastewater treatment process. Micro-
biome 7, 1–9 (2019).

54. C. Jiang et al., Characterizing the growing microorganisms at species level in 46 an-
aerobic digesters at Danish wastewater treatment plants: A six-year survey on mi-
crobial community structure and key drivers. Water Res. 193, 116871 (2021).

55. S. J. McIlroy et al., MiDAS: The field guide to the microbes of activated sludge. Da-
tabase (Oxford) 2015, bav062 (2015).

56. J. G. Caporaso et al., QIIME allows analysis of high-throughput community sequencing
data. Nat. Methods 7, 335–336 (2010).

57. D. J. Lane, “16S/23S rRNA Sequencing” in Nucleic Acid Techniques in Bacterial Sys-
tematics, E. Stackebrandt, M. Goodfellow, Eds. (John Wiley and Sons Ltd, 1991), pp.
115–175.

58. G. Muyzer, E. C. de Waal, A. G. Uitterlinden, Profiling of complex microbial pop-
ulations by denaturing gradient gel electrophoresis analysis of polymerase chain
reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700
(1993).

59. M. S. Dueholm et al., Generation of comprehensive ecosystem-specific reference
databases with species-level resolution by high-throughput full-length 16S rRNA gene
sequencing and automated taxonomy assignment (Autotax). mBio 11, e01557-20
(2020).

60. P. Yarza et al., Uniting the classification of cultured and uncultured bacteria and
archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645 (2014).

61. J. Oksanen et al., The vegan package. Community Ecol. Packag. 10, 719 (2007).
62. S. Kucheryavskiy, mdatools – R package for chemometrics. Chemom. Intell. Lab. Syst.

198, 103937 (2020).

Dottorini et al. PNAS | 11 of 11
Mass-immigration determines the assembly of activated sludge microbial communities https://doi.org/10.1073/pnas.2021589118

M
IC
RO

BI
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
26

, 2
02

1 

https://doi.org/10.1073/pnas.2021589118

